
Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

Groowiki Users Guide

Date (YYYY-MM-DD): 2009-07-27
Author: Peter Verhas
Language: English
State: DRAFT
Security: CONFIDENTIAL / BIZALMAS
Project: GROOWIKI
Version: 1.1
Document ID: 1.3.6.1.4.1.13923.0.75397328
Revisions: Version Date Author Comment

1.0 2009-03-22 Peter Verhas Initial version.
'1.1 2009-07-27 Peter Verhas

This document, file, any kind of material (referred as object hereto) and any information enclosed within it, contains restricted
and/or privileged information and is intended only for authorized screening and/or confidential presentation at VVSC discretion. If
you are not the intended observer of this object, you must not disseminate, modify, copy/plagiarize or take action in reliance upon
it, unless permitted by VVSC. None of the materials provided on this object may be used, reproduced or transmitted, in any form or by
any means, electronic or mechanical, including recording or the use of any information storage and retrieval system, without written
permission from VVSC. If you received this object in error please notify VVSC immediately. (legal_report@verhas.com) The confidential
nature of and/or privilege in the object enclosed is not waived or lost as a result of a mistake or error in this object. VVSC
accepts no liability whatsoever, whether it was caused by: 1. Accessing or other related actions to this object. 2. Any links, and/or
materials provided/attached to this object. VVSC assumes that all users understand risks involved within this object and/or its
attached materials. All rights reserved. All other brands, logos and products are trademarks or registered trademarks of their
respective companies. This legal text is presented in this object in English as well as Hungarian. In case there are differences
either in content, meaning or format between the versions the one permitting less freedom for the accessors of the object prevails.
Hungary, November 1, 2006.

...

Ez a dokumentum, fájl, vagy bármilyen más anyag (objektum) és minden ebben foglalt információ titkos és/vagy bizalmas információkat
tartalmaz, amelyet csak arra feljogosított személyek tekinthetnek meg. Ha az objektumot nem Önnek szánták nem másolhatja le, nem
adhatja tovább, nem módosíthatja, és nem használhatja fel semmilyen módon, csak ha a felhasználásra engedélyt kapott a VVSM-től.
Semmilyen ezen objektumban található, vagy kapcsolódó anyag nem másolható és nem továbbítható semmilyen formában, semmilyen módon,
elektronikusan vagy mechanikusan, beleértve a felvétel készítést, adattárolási és visszakeresési rendszerek használatát, a VVSM
írásbeli engedélye nélkül. Amennyiben véletlenül jutott ehhez az objektumhoz kérjük haladéktalanul értesítse a VVSM-et.
(legal_report@verhas.com) Az objektum bizalmassága titkossága nem vész el, és nem csökken a dokumentumban történő bármilyen hibától
vagy sérüléstől. A VVSM minden felelősséget elutasít, bármely eseménnyel vagy történéssel kapcsolatban, amelyik az objektumhoz
történt hozzáférés során történt. A VVSM feltételezi, hogy minden felhasználó tisztában van minden veszéllyel, amelyet ennek az
objektumnak a használata jelenthet. Az objektumban szereplő minden márka, logó a megfelelő tulajdonosok márkaneve vagy bejegyzett
márkaneve. Az objektumban ez a jogi szöveg angolul és magyarul is szerepel. Amennyiben a két szöveg között tartalomban, formátumban
vagy egyéb módon eltérés van az a mérvadó, amelyik az objektumot használó számára kevesebb jogosultságot ad. Magyarország, 2006.
november 1.

 Verhas & Verhas Software Craftsmen Page 1(22)

mailto:legal_report@verhas.com
mailto:legal_report@verhas.com

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

Contents
1.Introduction...3
2.Basic features...3
3.Architecture...5
4.Installation under Tomcat..5
5.Configuration..6
5.1.Configuring Commons..6
5.2.Main configuration...6
5.3.Configuring license..8
5.4.Authentication configuration...8
5.5.Plugin Configuration..10
5.6.Log4j configuration...11
6.URL Structure...13
7.Document upload...14
8.Templates and CSS...15
8.1.Business Type...15
8.2.Action/Business Type Templates..16
8.3.Default Business Type Handling..17
8.4.General templates...18
8.5.Template Parameters...19
8.6.Template helper class...20
9.Defining Action Classes...21

 Verhas & Verhas Software Craftsmen Page 2(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

1. Introduction

This is the Users' Guide of the program Groowiki. The document describes the architecture of the
program, the installation, configuration, the use, template, CSS and programming.

The use of the program is very simple. Groowiki is, simply to say, a web front-end for Subversion.
What you can see is a web interface that one can navigate along the directories and files and you
can download or upload files and set, alter file and directory properties.

These are the basic features of Groowiki out of the box. However in addition to these you can edit
the title and the description of the files and the directories and define the “business type” for each.
This way you can create business specific behavior for your actual implementation of Groowiki. It
is a simple “application platform” that supports radeox1 formatting Wiki pages, work-flow,
versioning of documents, Java and groovy plugins, fine-grained access control and many other
features.

2. Basic features
Using Groowiki you can manage your files, manage their versions and their meta data in a
convenient way using a well crafted Web interface. You can upload, download files, have a look at
the list of the files in the directories, navigate between the directories and look and modify the meta
data of each item (be file or directory).

When you log into the web page of Groowiki you see the root directory listing:

1 Some of the features may be available in later versions only.

 Verhas & Verhas Software Craftsmen Page 3(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

On the page you can see the title and the description of the directory (this is the top level directory)
and the list of the files. You can navigate to the files and the directories clicking on the links in the
file list. If we click on the link 'test.txt' (which is a sample file in the root directory of the sample
repository) then we will get to the following page:

On that page you can see the title, description and the properties of the file. This is an ordinary file
without so called business type. To download the file (or in case of HTML and text files to see the
content in the browser) click on the green download button. You can see a link [edit] that you can
click on to get to the editing page:

 Verhas & Verhas Software Craftsmen Page 4(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

On the top you can edit the title and the description of the file and on the lower part you can edit the
properties. To set the value of a property type the name of the property on the left and the value of it
to the right. If the property already existed the new value will override the old.

Soon we will see that properties are usually updated using business type edit forms providing a
much more convenient way for editing. Even though it is recommended that you start Groowiki
now and try to navigate and edit files and directories in the sample repository.

3. Architecture
Groowiki is a servlet application. It is written in Java and runs in a servlet container like Tomcat.
Groowiki does not have own storage (as of version 1.2.0). It connects to an SVN repository and as a
proxy in front of the repository it acts as a front end.

To be further detailed.

4. Installation under Tomcat
To install Groowiki under Tomcat 5.5 unzip the content of the WAR file into a directory named
/opt/groowiki. The actual name of the directory may be different, like /usr/local. Whichever it is
choose the directory where you usually install your applications.

It is usually a good practice to extract the WAR file into a directory that has a name something like
groowiki-1.0.0 that contains the versioning information in the file name and create a soft link from
it to the directory named groowiki. This helps the upgrade process from one version to the other.

Set the owner and the group of the directory and the files so that application tomcat can read the
file. The UNIX commands will look something like this.
mkdir /opt/groowiki-1.0.0
ln -s /opt/groowiki-1.0.0 /opt/groowiki
chown -R tomcat:users /opt/groowiki-1.0.0

 Verhas & Verhas Software Craftsmen Page 5(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

We assume that Tomcat is installed in the directory /opt/tomcat. Create a file named
/opt/tomcat/conf/Catalina/localhost/groowiki.xml

and edit it to have the following content:
<Context path="/groowiki" docBase="/opt/groowiki/" debug="0" reloadable="false">
</Context>

Doing so will make the application appear in the Tomcat web application list. However do NOT
start the application in Tomcat yet. Configure Groowiki before starting it.
Note that it is possible to start Tomcat in a way that it does not have a valid current working directory. Because the
underlying SVNKit library relies on a “local copy” even though Groowiki does not use the modules that would create
any local files on the server where Tomcat runs, not having a proper cwd may cause problems.

5. Configuration

5.1. Configuring Commons
Edit the file /opt/groowiki/WEB-INF/classes/config.xml to contain the following:
<?xml version="1.0" encoding="UTF-8" ?>
<configuration>
 <system/>
 <xml fileName="/opt/groowiki/WEB-INF/classes/groowiki.xml"/>
 <xml fileName="/opt/groowiki/WEB-INF/classes/mimeTypes.xml"/>
 <xml fileName="/opt/groowiki/WEB-INF/businessTypes.xml"/>
 <xml fileName="/opt/groowiki/WEB-INF/plugins.xml"/>
</configuration>
The two fileName parameters should point to the two files groowiki.xml, mimeTypes.xml,
businessTypes.xml and plugins.xml. These are configuration files, which contain XML formatted
description of the environment and the parameters that Groowiki has to follow. You can split up the
configuration into as many file as you wish, and there is no restriction what parameters to put into
which file. If you want you can compile the whole configuration into a single file or you can split
up the configuration into many files.

The file mimeTypes.xml contains the list of the mime types that are supported by Groowiki. This is
used to set the content type parameter of the http answer, when a file is downloaded. The content
type is determined by the extension of the file name, and the appropriate content type is selected
from the configuration. There are a plenty of mime types configured in the file, probably you need
not edit this file.

5.2. Main configuration
The file groowiki.xml contains the configuration of the application. A sample content of the
configuration file:
<?xml version="1.0" encoding="UTF-8"?>
<!--
 Document : groowiki.xml
 Created on : February 13, 2009
 Author : Peter Verhas
 Description:
 groowiki sample configuration
-->

 Verhas & Verhas Software Craftsmen Page 6(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

<configuration>
 <repository>
 <charset>ISO-8859-2</charset>
 <url>https://mySVNserver.com/doc/</url>
 <!-- professional edition and above START -->
 ... other options for professional and above editions ...
 <!-- professional edition and above END -->
 </repository>
 <velocity>
 <templates>
 <root>/opt/groowiki/WEB-INF/classes/templates/</root>
 </templates>
 </velocity>
 <descriptionFormats>
 <plain class="com.verhas.groowiki.wikiformatters.Plain"/>
 <html class="com.verhas.groowiki.wikiformatters.Html"/>
 </descriptionFormats>
 </configuration>

The configuration is an XML file that is handled by the apache.commons.config package. You have
to set the configuration parameters that are listed in color red in the list above and you may consider
to alter the values that are colored blue. (If the actual configuration file contains more keys in this
part, don't worry. These will be explained soon in this document.)

The configuration parameters are the followings:

• url (under repository) should define the URL of the repository that groowiki connects to.

• velocity.templates.root should define the directory where the velocity templates are. The
trailing / is a must.

• charset (under repository) should define the character set that the repository uses. The
repository actually does not use any character set, the files and the properties are simple byte
streams for the repository. On the other hand the client applications display and store the
national characters like ő,ű,ŵ, Ж using some character set. By default Groowiki uses utf-8
thus if you enter a revision log message or property value containing national character then
it will be stored in the repository utf-8 encoded bytes and the other way around: Groowiki
will convert the bytes as utf-8 encoded byte stream. Using this configuration you can
override this behaviour. Hint: if you use TortoiseSVN you may want to use ISO-8859-1 in
western Europe and ISO-8859-2 in central and east Europe. If you speak/use only ASCII
English then forget this option.

• descriptionFormats should list the different formats that are supported by the file and
directory descriptions. Groowiki 1.0.0 supports only two formats: plain and html. The
attribute class defines the Java class that handles the conversion of these formats when the
description is displayed. You better do not alter these configuration options.

• security.forbidHtmlError can be either true or false. The default value is false. If this
value is set to true then Groowiki will not send a simple “page can not be displayed”
message to the client browser instead of the detailed text of the exception. It is
recommended to use the default value in development environment and use the value true
in real operation. Exceptions are always listed in the log files in full detail.

• maxUploadableSize can define the maximum size of a file in bytes that groowiki accepts as a
new file or a new version of a file already in the repository. This is not a recommended way

 Verhas & Verhas Software Craftsmen Page 7(22)

https://mySVNserver.com/doc/

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

to upload files using the web interface, but rather through normal SVN ways. Using the web
interface is slower and you can only upload limited number of files in a single commit. The
default value is 100MB.

• maxFileStoredInMemory when a file is uploaded this many bytes are stored in the memory of
the server. If a file is larger than this then the upload process writes the bytes into a
temporary file and afterwards groowiki reads the bytes from the temporary file. The default
value for this parameter is 100MB. Setting this parameter larger than the parameter
maxUploadableSize is senseless.

5.3. Configuring license
A license is a plain text file that you have to copy to a location where it can be accessed by
Groowiki application to read.
 <edition>
 <license>
 <file>/opt/groowiki/licence-2009-08-18-vvsc.coded.professional.txt</file>
 </license>
 </edition>

Groowiki is looking for the license file in the configuration under the key edition.license.file
Write the full path to the license file into this configuration key. If there is no license configured, or
the license is invalid (file does not exist, badly formatted or the license expired) then Groowiki will
starts with the Community edition features. The edition groowiki is performing you can see on the
opening page in the footer after you logged in.

5.4. Authentication configuration
Community edition of Groowiki relies on the authentication of the underlying SVN repository. The
user name and the password provided on the web interface by the user is used to access the
repository. In professional, enterprise and ASP editions there are more options. Any of these
editions are compatible with the community edition though, if you start groowiki with a
professional or higher level license using the community configuration the execution should be the
same.

If you use the professional edition you can specify what user name and password to use when
accessing the repository. This means that the users are authenticated against a different
authentication mode and the repository is accessed a service user name and password. This way
professional edition need not disclose the user names and passwords that give direct access to the
repository via the direct http, svn or other protocols.
 <repository>
 <url>https://svn.verhas.com/cs/demo/</url>
 <charset>UTF-8</charset>
 <username>vvsctestaccountRW</username>
 <password>ahki_ssudd$j29/%</password>
 <plugin>
 <username></username>
 <password></password>
 </plugin>
 </repository>
 <authentication>

 Verhas & Verhas Software Craftsmen Page 8(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

 <type>file</type>
 <file>/opt/groowiki/users.txt</file>
 </authentication>

Professional edition and higher will use the configured value of the key repository.username as
user name and repository.password as password to access the repository. If they are not defined
then the user name and the password specified by the user on the web interface will be used. You
can also define a separate user name and password pair optionally repository.plugin.username
as user name and repository.plugin.password as password to access the repository when a
plugin is executing. That way plugins may get different rights accessing the repository (usually less
restricted). If these two keys are not defined then the user name and password inherited from the
earlier mentioned keys, or from the web interface.

Enterprise edition gives even more flexibility. Although you can configure the enterprise edition the
same way as the professional edition you can also define service user name and password for each
plugin individually. If you add the configuration tag 'repository' to the configuration of a plugin
then you can define the user name, password and even the URL of the repository for that very
specific repository. An example:
 <sampleGroovy id="com.verhas.groowiki.sampleGroovy" type="groovy">
 <repository>
 <username>vvsctestaccountRW</username>
 <password>sheep123</password>
 <url>http://myserver.com.intranet/svn/repo</url>
 </repository>
 <script>samplePlugin.groovy</script>
 </sampleGroovy>

The reason to configure a plugin so detailed can be various. You can fine tune the access control of
the plugins differently, each plugin may get permission to access only the resources it really needs.
You can write a plugin that pulls information from another repository. You can access the
repository by different protocol. For example the users access the repository through Groowiki
using their user name and password via http Web DAV that enforces access control, while a plugin
(but not all) can access the repository using the file:// protocol because this very plugin is trusted
and the direct access is fater.

If the repository is accessed using service account there is a need for a user database that the actual
provided user name and password can be checked against. This can be done under the key
authentication. The value of the configuration key authentication.type has to be file or
crypt. Later releases will support more user stores. The key authentication.file should give
the full path to the file where the user names and passwords are stored. This file is read each time a
user logs in. Any change in this file will become effect immediately.

If the type is file then the content of the file should be similar to
peter:kakukk
pityu:mityu
erzsi:karog
each line containing a user name, a colon character and the password in clear text..

If the type is crypt then the content of the file should be similar to
peter:rZ/dwMl2T8enI

 Verhas & Verhas Software Craftsmen Page 9(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

pityu:M3vyOhFxLXiaw
erzsi:jIStnBGtFha7g
each line containing a user name, a colon character and the password encrypted. The encryption and
the file format is the same that is used under UNIX so you can create and maintain such a file using
the UNIX htpasswd tool. (The sample files above contain the same passwords, so you can try the
'crypt' authentication copy-pasting the content of the second example and using the passwords
presented as clear text in the first example.)

The ASP edition gives you total freedom to define a Java class that can handle the login any way it
wants. All you need is a Java class on the classpath that implements the interface
com.verhas.groowiki.edition.ASPAuthenticator (defined in Groowiki-editions JAR file) and
configure the name of the class in the configuration file under the key
authentication.authenticator.class:
 <authentication>
 <authenticator>
 <class>com.verhas.groowiki.authenticator.sample.Authenticator</class>
 </authenticator>
 </authentication>

The interface is very simple:
package com.verhas.groowiki.edition;
import com.verhas.authentication.AuthData;
public interface ASPAuthenticator {
 public boolean authenticate(AuthData authData);
}

The used AuthData is also an interface that can be used by the class to access user name and
password entered by the user:
package com.verhas.authentication;
public interface AuthData {
 public String getLoginPassword();
 public String getLoginUsername();
...
}

There is a sample implementation in the groowiki source
com.verhas.groowiki.authenticator.sample.Authenticator:
package com.verhas.groowiki.authenticator.sample;
import com.verhas.authentication.AuthData;
import com.verhas.groowiki.edition.ASPAuthenticator;
public class Authenticator implements ASPAuthenticator {
 public boolean authenticate(AuthData authData) {
 return true;
 }
}
This very simple class simply lets just anyone to log in using any user name and password (even
empty ones).

 Verhas & Verhas Software Craftsmen Page 10(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

5.5. Plugin Configuration
Plugins have to be configured into Groowiki. Groowiki will not try to invoke a Java class or
Groovy script unless it is configured in the configuration file. This ensures that only plugins that the
system manager approved are executed.

Plugins are configured in the file plugins.xml.
<configuration>
 <plugins>
 <sample id="com.verhas.groowiki.sample-plugin" type="java">
 <class>com.verhas.groowiki.plugin.SamplePlugin</class>
 </sample>
 <sampleGroovy id="com.verhas.groowiki.sampleGroovy" type="groovy">
 <script>samplePlugin.groovy</script>
 </sampleGroovy>
 </plugins>
</configuration>
The plugins are configured in XML tags under the key 'plugins'. Each plugin should have a
different key: 'sample', 'sampleGroovy'. You can use arbitrary names so long as long each plugin has
its own tag name.

Plugins are identified by their 'id'. The 'id' is an attribute string and is be referenced in the velocity
template calling the $helper.invoke method. Currently there are two type of plugins handled. These
are 'java' and 'groovy'. Java plugins are written in Java, while Groovy plugins are written in Groovy.
The Java plugins should be configured for their implementing class, while Groovy scripts should be
configured for their script.
<configuration>
 <groovy>
 <mode>develop</mode>
 <classpath>
 <dir>/opt/groowiki/WEB-INF/groovy/classes/</dir>
 </classpath>
 <scripts>/opt/groowiki/WEB-INF/groovy/scripts/</scripts>
 </groovy>
</configuration>
The Groovy execution environment may be configured under the key 'groovy'. The directory where
the scripts are SHOULD be configured. In addition to the Java classes that are available in
Groowiki addition directories may be configured for the Groovy files that contain groovy classes.
The mode (default is develop) may define whether the groovy interpreter is embedded and operated
in develop more (debugging and continuous script recompilation) or deploy (no debugging or
recompilation). Community edition supports only ‘develop’ mode. Professional, Enterprise and
ASP editions support 'deploy' mode as well.

The actual configuration may contain more parameters than this documentation. The sample
configuration files contains documentation on the possible keys and values as XML comments in it.

5.6. Log4j configuration
Groowiki uses the log4j logging subsystem. The configuration of this subsystem should be done via
a separate configuration file which has nothing to do with Groowiki at all (see the documentation
on how to configure the logging subsystem later). However the library SVNKit used by Groowiki is
logging using the JDK logging subsystem. To unify the logging Groowiki redirects the logging of
the SVNKit logging into log4j. The following few configuration keys have to be used in the

 Verhas & Verhas Software Craftsmen Page 11(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

groowiki.xml file (and not in the log4j.properties file) to configure how this redirection is
performed.

Note that this logging is DEBUG log and is useful when you hunt a bug that you believe is lurking
in the underlying networking layer or inside SVNKit. Therefore the default value for these values is
false: do not log anything. You may also see the default configured into the groowiki.xml file
something like

 <svnkit>
 <log>
 <all>false</all>
 <exceptions>false</exceptions>
 <messages>false</messages>
 <network>false</network>
 </log>
 </svnkit>

this is equivalent to the default value, which is when this xml fragment is not present in the
configuration.

• svnkit.log.all switch SVNKit debug logging on or off. False means that there will be no
logging and true means that there will be logging. Also if this key is defined then the value
of this key will be the default value for the following configuration keys:
svnkit.log.exceptions, svnkit.log.messages and svnkit.log.network. In other words you
can

◦ switch on or off all SNVKit logging or you can

◦ switch exception, message and network traffic logging on individually, or

◦ switch on all logging and switch off exception, message and network traffic logging
individually.

• svnkit.log.exceptions log SVNKit exceptions into the log. This configuration key has
nothing to do with other Groowiki exception logging, only those exception logs that come
from the SVNKit library.

• svnkit.log.messages log normal log messages from the SVNKit library into the log file.

• svnkit.log.network log the network traffic that SVNKit performs. Note that this logging
may generate a really huge amount of log. Use this with caution.

In addition to configuring Groowiki you also have to configure the underlying logging system.
Groowiki uses the apache log4j logging and it is configured using the file /opt/groowiki/WEB-
INF/classes/log4j.properties (as a matter of fact any log4j.properties fits that is on the
classpath).

A sample content of the log4j.properties file:
the root logger log level and the name of the appender
log4j.rootLogger=DEBUG,debuglog

debuglog appender type
log4j.appender.debuglog=org.apache.log4j.DailyRollingFileAppender
log4j.appender.debuglog.DatePattern=.yyyy-MM-dd
log4j.appender.debuglog.File=/opt/groowiki-1.0.0/gw.log

 Verhas & Verhas Software Craftsmen Page 12(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

log4j.appender.debuglog.Threshold=debug
log4j.appender.debuglog.layout=org.apache.log4j.PatternLayout
log4j.appender.debuglog.layout.ConversionPattern=%d [%t] %-5p %c (%F:%L) - %m%n

You are free to configure the logger (see the documentation of log4j on how to). The most
important step however is to alter the
log4j.appender.debuglog.File=/opt/groowiki-1.0.0/gw.log

so that it points to a file (need not exist, it will be created) that will hold the log file. Note that the
user running the Tomcat server should be able to write the directory where the log file is to be
created. In the examples above we assumed that the application Tomcat is executed by the user
tomcat in the user group users. Still using the example above you can check:
ls -ld /opt/groowiki-1.0.0/
drwxr-xr-x 5 tomcat users 312 2009-03-27 19:08 /opt/groowiki-1.0.0/

that the directory exists and is writable by tomcat.

6. URL Structure
Groowiki has a very well defined URL structure. When an application extends Groowiki it may rely
on the structure of the URL. Whenever Groowiki has to display some information it does as a
response to a GET http request. The URL should look something like this:

http://host:port/application_path/command/path:revision?params
As an example:

http://localhost:8084/gw/view/folder1/a/sss:110
the URL will display the content or the properties of the directory or file 'sss' that is in the directory
'folder1/a'. The revision it will display is 110.

The parts of the URL are the following:

• host is the name of the host.

• port is the number of the port the servlet container or application server is listening to

• application_path is the path to the Groowiki application. This is usually configured
in the servlet-mapping tag of the web.xml file. This may however depend on the servlet
container type and version you use to execute Groowiki. This path also contains the part of
the URL where you deployed Groowiki. (Note that version 1.0.0 could only be deployed as
ROOT servlet.)

• command is the command you ask Groowiki to execute. The default command is 'view', but
there are also predefined actions 'edit' and 'download' in Groowiki. In addition to these you
can define more actions providing templates for them. 'view' being the default means that
Groowiki will perform the action 'view' if it finds an action that it does not know.

• path is the path of the actual document that Groowiki has to perform some action. As you
can see in the example this is a full path inside the repository to the file or directory.

• revision is repository revision number. This part of the URL is separated by the previous
part by a colon and this is optional. If the revision is not specified, or is not a number, or

 Verhas & Verhas Software Craftsmen Page 13(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

badly formatted in any way then the HEAD revision (the latest version) of the document
will be used.

• params contain optional parameters in the usual cgi format: 'name=value&name=value'
The use of these parameters is up to the plugin that implements an action. The only
predefined parameter is 'ap=1' which is used by the built-in action 'view'. If this parameter is
defined then the action will display all svn properties including those that contain a colon in
their names. Such properties are usually svn or Groowiki internal properties.

Whenever a modification has to be done to the repository Groowiki should be queried with an http
POST request. In this case the URL has the same structure, however some of the parameters,
namely command and revision are ignored. Simply to say whenever a html form is created in a
template the action URL should be '?'. Note that enctype="multipart/form-data" is also a must.
Do not add encoding modifier to it.

7. Document upload
Groowiki handles document upload and modification. There are templates that display forms that
let users modify document (file, or directory) SVN properties, set new properties, create directories
and to upload new documents. Each of those forms use http POST method that are handles by
Groowiki.

This section defines the form fields that Groowiki handles when a http POST operation is
performed.

The encoding of the file should be multipart/form-data. Groowiki does not handle
application/x-www-form-urlencoded form data. The simplest way is to specify the form header
as:
<form name="upload" action="?" method="POST" enctype="multipart/form-data">
</form>
The fields that may be present in the form are the following:

• logm should contain the log message. Each form post modifies the SVN repository creating
a new revision. This is the message that appears in the history of the SVN repository.

• path should contain the path of the directory where the modification take place. Each POST
operation should refer to a path using this parameter and all file and directory names are
relative to this path. This parameter is ignored in versions after 1.0.1 Instead the http
request URL is used to determine the path.

• nameXX contains the name of the file or directory to be created uploaded or modified.

• fileXX contains the file uploaded. If the parameter nameXX is missing then last part of the
path of the fileXX is used instead.

• dirnXX contains the name of the directory to be created.

• pronXX.YY contains the name of a property. The property will belong to the file or directory
named by the parameter nameXX or dirnXX. YY is a serial number for the property. This way
there can be several properties set for a file or directory when the file is uploaded or
directory is created or some time later when they already exist.

 Verhas & Verhas Software Craftsmen Page 14(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

• provXX.YY contains the value for the property for which the name was specified in the
parameter pronXX.YY

The parameters above contain XX and YY in their notation. These values are numbers. For example a
form may contain the parameters (path, logm, name0, file0, dirn1, pron1.0, prov1.0). The
numbers are not used for ordering the parameters. They are only to identify the pairing of the
parameters. You can choose arbitrary numbers. The only requirement is that nameX belongs to file
X and property name pronX.Y belongs to property value provX.Y

8. Templates and CSS
Groowiki creates the web pages that it displays in the users' browser from velocity template files.
The location of the templates is configured in the configuration key velocity.templates.root
This directory contains the general VM files and there should also be some subdirectories that
contain specific templates. The current implementation (1.0.0) contains the CSS definitions
included by the templates in the template style.vm. The current implementation (1.0.1) contains
the CSS definitions in the file 'css/default.css'. If you want to change the appearance of
Groowiki you need to change only this template.

8.1. Business Type

Groowiki work with files that have properties. Any file can have any number of properties so long
as long each property has a name. Therefore, as an example, you can store the issuer, recipient,
issue date, complete date, payment date, payment type, netto amount, tax and so on for invoice
documents. Whenever you upload the scanned image of an invoice you can press the link to edit the
meta data and you can name each property and the value.

After a while it becomes cumbersome, and it is also error prone to type repeatedly the names of the
properties. To ease data recording Groowiki lets you define the business type of a document, be it
file or directory. When a document has a business type Groowiki knows what properties the
document should have (the business type definition in the configuration file defines it) and will
render a special form that contains fields specially for those properties that are needed for the type.
This way you can upload the scanned invoice image and after clicking on “edit properties” you get
a screen that displays input fields tailored for the special need of an invoice. Date fields will have
click-able date selector links, numeric fields will format the numbers to thousands and so on.

Business types are defined in the configuration file and in some editions of Groowiki in files in the
repository. The business type of a directory is defined by the property 'groowiki:businessType',
the property should contains the name of the business type, in case of an invoice directory
(whatever that may mean) the string 'invoice'.

The business type of a file may also be defined by the property 'groowiki:businessType', but if it
is not defined by this property then the property 'groowiki:containedBusinessTypes' of the
containing directory will be used. If neither property is defined then the 'default' business type is
used, which does not know anything about the required properties.

 Verhas & Verhas Software Craftsmen Page 15(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

You can also edit a document’s properties if it had the business type 'x' even if it does not
appending the CGI parameter 'bt=x' at the end of the URL. This way you can, for example, have
invoices, contracts, agreements, and you may have an extra business type 'genericDocument' that is
common for each and lets you edit registry number of the document without setting it's business
type to 'genericDocument'.

8.2. Action/Business Type Templates
If you look at the distribution of Groowiki 1.0.0 you can see the following files:

You can see the general VM templates like style.vm,
properties.vm and other files in the root directory of the
templates. These are templates that are included by other
templates and contain CSS or html code that are general and used
by many other templates.

The directory 'types' contains the templates that are specific to
business types. Recall that each directory or file in Groowiki can
have a business type. The business type is stored in the svn
property groowiki:businessType. When a directory or file is
displayed then Groowiki will use the template that fits the
business type found in that property of the file or directory.

More precisely let’s say that we invoked Groowiki with the URL
http://localhost/gw/doit/dir/file_or_dir

In this case groowiki will have a look at the file or directory
'dir/file_or_dir' in the repository and fetch the SVN property
groowiki:businessType. Let’s say that the value of this
property is 'my_special'. Groowiki will try to open the template
types/my_special/doit/file.vm if file_or_dir is a file and
types/my_special/doit/directory.vm if file_or_dir is a
directory.

This way one can implement different templates that can be selected based on the business type and
the actual command. If some of the templates are missing then Groowiki will try to use another
template as best it can guess instead of the one missing.

The formal algorithm of template search is the following:

1. Look for the template types/'businessType'/'action'/[directory|file].vm
2. If the template does not exist then try to find a template based on the inherited business

types. This step is implemented in version 1.1.0 and later.

3. If the template does not exist then try types/'businessType'/view/[directory|
file].vm

4. If the template does not exist then try types/default/'action'/[directory|file].vm
5. If the template does not exist then try types/default/view/[directory|file].vm

Note that the template searched for in the fourth step should exist as this template is part of the

 Verhas & Verhas Software Craftsmen Page 16(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

standard installation.

Using this information you can already create applications simply crafting templates that display
different edit forms and view pages without any programming. All you have to do is create
templates for the different business types and actions and use the POST/upload feature of Groowiki.
But if even that is too much then starting with version 1.1.0 you need only define the business type
in the configuration and Groowiki will use a default template that matches the fields of the business
type.

8.3. Default Business Type Handling

Whenever Groowiki sees that you want to 'view' or 'edit' a directory or file that has business type (or
if you define the business type on the cgi parameter 'bt') then it will display a special web page that
fits the parameters of the business type unless you provided a customized template. The specialized
page for edit will contain fields that match the type of the fields that are defined in the business
type. Our favorite example is the business type 'invoice'. It contains all properties that are relevant
for an invoice. When the properties of a document that belongs to an 'invoice' business type are
displayed the following table will appear.

All these properties will be displayed even though the Issuer, Recipient and some other properties
are not defined for the document. When you edit such a document you will get something like:

 Verhas & Verhas Software Craftsmen Page 17(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

In this form in the gray areas you can type the values for the properties and you can click on select
to get a date selector popup. JavaScript will also help to format the numbers for the fields that
contain money values and help avoid wrong format. You need not remember what properties an
invoice usually have.

8.4. General templates

The general templates are in the directory configured by the configuration key
velocity.templates.root. These are the following (release 1.0.0):

• breadcrumb.vm contains the html text for the top line path that contains each directory
down to the actual one displayed and that helps the user to navigate upward in the directory
structure.

• directoryeditform.vm displays the form that is used to alter a directory.
• editinput.vm displays the fields of a file or directory title and description to edit.
• fileeditform.vm contains a html form that should be used to set the properties of a file. At

a time you can set at most 10 properties. Have a look at the template how to change this
property (hint: search $prN).

• filelist.vm contains a table that list the files. This is used when a directory is displayed.
• footer.vm contains the footer copyright text.
• headline.vm contains the headline, usually the Groowiki logo.
• properties.vm contains html text that displays in a loop the properties. These can be

properties of a file or a directory.
• style.vm contains the CSS code for the templates. This template is included by each other

non-fractional template.

 Verhas & Verhas Software Craftsmen Page 18(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

• BusinessTypeEditForm.vm contains an edit form for directories or files that have their
business type defined. This file in included by types/default/edit/file.vm and
types/default/edit/directory.vm and let’s you to avoid crafting special templates for
each business type.

8.5. Template Parameters

Velocity templates used by Groowiki rely on the parameters that Groowiki provides. In this section
we list all the parameters that are available in the templates (as of version 1.0.0):

• descriptionNotSpecified true if the description of the document to be displayed is not
defined and false otherwise

• titleNotSpecified true if the title of the document to be displayed is not defined and false
otherwise

• description contains the description of the document
• title contains the title of the document
• parentsExist is true if there is a parent element of the document to be displayed and false

if the document to be displayed is the root directory of the repository
• parentList contains a list. Each element of the list is a map with two values: name and

path. The 'name' element contains the name of the actual element, 'path' contains the full
path to that element. For example we want to display the document 'p1/p2/p3'. In this case
the length of the list parentList is 2. The first element contains name='p1' and path='p1',
the second element contains name='p2', and path='p1/p2'. For more information on how to
use this parameter have a look at the template breadcrumb.vm

• UUID contains the repository UUID. This parameter is available, but it is not used by
standard templates.

• root contains the repository root. That is the directory where the repository is.
• headRevision contains the revision number of the head revision
• helper contains a helper object. The documentation of the use of the helper object is

detailed in a separate section.
• date contains an instance of standard velocity DateTool. For more information see the

standard documentation of the velocity tool DateTool on the web.
• math contains an instance of standard velocity MathTool. For more information see the

standard documentation of the velocity tool MathTool on the web.
• number contains an instance of standard velocity NumberTool. For more information see

the standard documentation of the velocity tool NumberTool on the web.
• render contains an instance of standard velocity RenderTool. For more information see

the standard documentation of the velocity tool RenderTool on the web.
• esc contains an instance of standard velocity EscapeTool. For more information see the

standard documentation of the velocity tool EscapeTool on the web.
• list contains an instance of standard velocity ListTool. For more information see the

standard documentation of the velocity tool ListTool on the web.
• sorter contains an instance of standard velocity SortTool. For more information see the

standard documentation of the velocity tool SortTool on the web.
• iterator contains an instance of standard velocity IteratorTool. For more information

see the standard documentation of the velocity tool IteratorTool on the web.

 Verhas & Verhas Software Craftsmen Page 19(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

• files contains a list of maps. Each map contains the following
◦ name contains the name of the document to be displayed
◦ author contains the author of the document to be displayed
◦ revision contains the revision of the document to be displayed
◦ commitMessage contains the commit message of the revision when the entry last time

was modified
◦ date contains the date of the entry
◦ size contains the size of the entry

• hasProperties is true if the document has properties and false otherwise
◦ relativePath contains the relative path of the entry
◦ isDir is true if the entry is a directory
◦ isFile is true if the entry is a plain file

• numberOfFiles contains a number that is the number of the files in the directory currently
displayed

• numberOfDirs contains a number that is the number of directories in the directory currently
displayed

• total contains the number numberOfFiles + numberOfDirs
• revision is the revision of the document that was requested to be displayed.
• actualRevision is the revision of the document to be displayed. This may be different

from 'revision'. For example the URL specifies that the document revision 110 should be
displayed. However the document was modified in the revision 108 and next time only in
the revision 120. The document displayed has the actualRevision 108 even though the
requested revision was 110, because the version of the document at the revision 110 of the
repository is the version of the document that was uploaded in the revision 108.

• revisionSpecified is true if the revision was explicitly specified in the URL
• properties contains a Map containing the properties and their respective values. If the

optional parameter 'allProperties' is not specified in the URL then this map contains only
the normal properties, otherwise it contains all the properties even the ones that contain a
colon in their names.

• allProperties contains a Map containing the properties and their respective values. All
properties are listed in this Map.

• result contains the text returned by the action object plugin.

8.6. Template helper class

An instance of the helper class can be accessed from the templates using the parameter helper.
Currently there are only a few methods that can be used in this class. These are the following:

• String createLink(String action, String path, String revision) returns the
URL of a link to the document that is identified by the path and the action 'action' is to be
performed. If the revision is null or empty string then the URL will be created for the latest
revision. (Since 1.0.0)

• String createRelativeLink(String action, String path, String revision)
returns the URL of a link to the document that is identified by the path and the action
'action' is to be performed. If the revision is null or empty string then the URL will be
created for the latest revision. The path is treated as relative link unless it starts with the

 Verhas & Verhas Software Craftsmen Page 20(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

character / .(Since 1.1.2)
• String createFormOptionField(List<String> options, String actualValue)

returns a string that contains html form option values with a 'selected' keyword in the option
that contains the value actualValue. (Since 1.0.0)

• String createImageLink(String imageName) returns the URL of a link to an image.
The images are stored in the /images directory of the web application Groowiki. (available
since 1.0.1)

• Object invoke(String pluginName, String... params) invokes the plugin with the
parameters. The name of the plugin has to be the string that is configured for the plugin in
the configuration file in the 'id' attribute. The parameters can be arbitrary strings. The return
value is up to the plugin. This is usually a string that gets into the output, but it may also be
some object that can have methods to further call from the template via velocity.

9. Defining Action Classes2

The use of actions is deprecated as of 1.2.0. It is still there but it is not supported. There is no
known action class implementation that got into production. Instead of action classes use plugins.

For the sake of simplicity in the above examples we did not present the configuration of the actions.
However if you look at the real groowiki.xml file you will see some code similar to this:
 <actions>
 <default package="com.verhas.groowiki.types.defaul">
 <!-- note that there is no 't'. It is 'defaul'
 because 'default' is Java reserved word -->
 <file>
 <view class="ViewFile"/>
 <download class="DownloadFile"/>
 <edit class="EditFile"/>
 </file>
 <directory>
 <view class="ViewDirectory"/>
 </directory>
 <post>
 <view class="ViewFile"/>
 </post>
 </default>
 </actions>

This xml fragment defines different Java classes that are instantiated and some methods are
executed at different occurrences. You can define actions to be executed for the different business
types. By default there are action classes defined for the default business type. You can redefine
these classes bravely. The default implementations do not really perform any action and in case you
configure a class that can not be loaded then Groowiki will load the default classes anyway (after
logging the error).

There are Action classes defined for the default business type for actions performed with files,
actions performed with directories and for POST operations. In case of POST operation directories
and files may be modified together therefore these actions should be complex handling the

2 Note that action classes and the API available for them is experimental and may change in the future in a backward
incompatible manner.

 Verhas & Verhas Software Craftsmen Page 21(22)

Groowiki Users Guide CONFIDENTIAL / BIZALMAS v 1.1

situation.

To ease configuration the XML tag that holds the name of the business type may specify the
package where the class files are. You may do this if the classes are all in one package or in sub
packages of a single package.

In the attribute “class” of the tag that is the name of the action you have to define the Java class. If
you did not define the package then you have to define the class with the full path.

Note that this is your responsibility to put the class and jar files containing your Java classes in the
servlet container so that Groowiki can load them.

Action classes should implement the interface com.verhas.groowiki.Action. The easiest way to
accomplish this is to extend the abstract class com.verhas.groowiki.AbstractAction.

For more information have a look at the JavaDoc of the interface com.verhas.groowiki.Action.

__END__

 Verhas & Verhas Software Craftsmen Page 22(22)

	1. Introduction
	2. Basic features
	3. Architecture
	4. Installation under Tomcat
	5. Configuration
	5.1. Configuring Commons
	5.2. Main configuration
	5.3. Configuring license
	5.4. Authentication configuration
	5.5. Plugin Configuration
	5.6. Log4j configuration
	6. URL Structure
	7. Document upload
	8. Templates and CSS
	8.1. Business Type
	8.2. Action/Business Type Templates
	8.3. Default Business Type Handling
	8.4. General templates
	8.5. Template Parameters
	8.6. Template helper class
	9. Defining Action Classes2

